Köhler theory for a polydisperse droplet population in the presence of a soluble trace gas, and an application to stratospheric STS droplet growth
نویسنده
چکیده
We consider the equilibrium behavior of a polydisperse aqueous droplet population as a function of relative humidity (RH) when a soluble trace gas, such as nitric acid, is present in the system. The droplet population experiences a splitting when the RH is increased sufficiently. This splitting is not related to the traditional Köhler activation of cloud droplets, as it may occur at relative humidities below 100%. Remarkably, the splitting always takes place in such a way that the largest size class of the (discretized) droplet population starts taking up the soluble trace gas efficiently, growing steeply as a function of RH, and forcing the smaller droplets to shrink. We consider this behavior in terms of open and closed system Köhler curves (open system referring to one in which the trace gas concentration remains constant and closed system to one in which the gas concentration decreases as a result of uptake of the trace gas). We show how the open and closed system Köhler curves are related, and that the splitting of the population can be explained in terms of closed system curves crossing the Köhler maxima of the open system curves. We then go on to consider time-dependent situations, and show that due to gas-phase mass transfer limitations, the splitting of the size distributions moves toward smaller sizes as the rate of RH increase becomes more rapid. Finally, we consider stratospheric supercooled ternary solution droplet populations, and show that the splitting described using the new theory may lead to formation of bimodal size distributions in the stratosphere.
منابع مشابه
Dynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow
The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...
متن کاملA Theoretical Mass Transfer Approach for Prediction of Droplets Growth Inside Supersonic Laval Nozzle
Proper estimation of droplet growth rate plays a crucial role on appropriate prediction of supersonic separators performance for separation of fine droplets from a gas stream. Up to now, all available researches employ empirical or semi-empirical correlations to define the relationship between droplet growth rate (dr/dt) and other operating variables such as temperatures (T and TL), Pressure (P...
متن کاملDynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow
The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...
متن کاملPolydisperse Köhler theory with trace gases
Polydisperse K ¨ ohler theory with trace gases H. Kokkola et al.
متن کاملFour different types of a single drop dripping down a hole under gravity by lattice Boltzmann method
In this paper the dynamic of a droplet on a surface with a hole is investigated under gravitational effect by using lattice Boltzmann method. Incompressible two-phase flow with high density ratio proposed by Lee is considered. Cahn’s theory is used to observe the wettability of the surface in contact with liquid and gas phases. Several parameters such as contact angle, surface tension and gravi...
متن کامل